
20 The Delphi Magazine Issue 63

Under Construction:
More Local ClientDataSets
by Bob Swart

I was one of the about 200 people
attending the Kylix Preview at

the Inprise UK Conference in
London on September 25th, where
David Intersimone and John Kaster
talked about and showed the Kylix
IDE, accompanied by their CEO
Dale Fuller, who had come over to
give us one important message:
Kylix will ship when it’s ready (and
not sooner), and the aim for ‘before
the end of the year’ is a mere aim,
not a goal in itself.

During that presentation, David
received some cheers when he
publicly announced that MIDAS
(and specifically TClientDataSet)
would be moved down from the
Enterprise level to the Professional
level, and Kylix (specifically,
Delphi Professional for Linux)
would contain MIDAS and a
TClientDataSet component. The
cheers quickly became boos (from
me, that is) when David also made
it clear that only the thin-client
side of MIDAS would be in the Pro

boxes, and not the TxxxConnection
components. Too bad, but not
entirely unexpected, since the Con-
nection components are the ones
that make MIDAS applications turn
into n-tier applications. You could,
of course, decide to roll your own
(at least when it comes to sending
data from one tier to another),
which is what we will do near the
end of this column, so don’t go
away!

Last Time
Last time, I explained some of the
benefits of using local ClientData-
Sets (speed, easy installation, etc)
without actually using them,
because we spend most of our time
feeding the ClientDataSets with
data. In fact, one could say that the
majority of last month’s column
was focused on XML and the XML
format produced (and recognised)
by the ClientDataSet component.
We even ended up with a table defi-
nition and generation tool that
could generate table metadata in
XML format.

This time, we’ll use that result to
create thin-client applications that
require no additional configura-
tion (other than deploying
MIDAS.DLL) and will be blazing fast.
We’ll then use a socket component
to make two tiers (but separate
applications) that communicate
ClientDataSet data in XML format
between each other.

Simple CGI
Assuming that we have an XML
data file available (either with data
or just with metadata, as we gener-
ated last time), then the easiest
way to demonstrate the ease of use
of TClientDataSet components is
to create a web server console
application (in other words a CGI
application) that just dumps the
content of a ClientDataSet to an
HTML table. I’m deliberately using
a console application here, and not
a WebBroker application, since
that would only distract us from
the use of the ClientDataSet
component.

Once you’ve dynamically cre-
ated a TClientDataSet instance, all
you need to do is perform a
LoadFromFile (or LoadFromStream)
and call Open (or set Active to True)
and the data is available. No BDE
DatabaseName and TableName, nor an
ADOConnectionString and TableName
(or CommandText), but just a
LoadFromFile to fill the Client-
DataSet with data.

In fact, if you look at Listing 1,
you will notice that this is a CGI
application already. And with a
little effort, you can make it search
for specific records, like all the
BIOLIFE fish that are smaller than a
certain size (using the Length (cm)
field).

Since ClientDataSet cannot per-
form SQL queries, you need to
perform this search either by
using a filter, or by checking the
value of the Length_In field inside

program CDSxmlC;
{$APPTYPE CONSOLE}
uses
DBClient;

var
i: Integer;

begin
writeln('content-type: text/html');
writeln;
writeln('<HTML>');
writeln('<BODY BGCOLOR=FFFFCC>');
with TClientDataSet.Create(nil) do
try
LoadFromFile('table.xml');
Open;
First;
writeln('<TABLE BORDER=1>');
writeln('<TR>');
for i:=0 to Pred(FieldCount) do
writeln('<TD BGCOLOR=FFFFFF>',Fields[i].FieldName,'</TD>');

writeln('</TR>');
while not Eof do begin
writeln('<TR>');
for i:=0 to Pred(FieldCount) do
writeln('<TD VALIGN=TOP>',Fields[i].AsString,'</TD>');

writeln('</TR>');
Next

end;
writeln('</TABLE>')

finally
Free

end;
writeln('</BODY>');
writeln('</HTML>')

end.

➤ Listing 1

November 2000 The Delphi Magazine 21

the while not Eof loop. The latter
solution would result in the code
shown in Listing 2 (with 42 hard
coded, but you get the idea).

The other solution, using a
Filter, would result in the follow-
ing additional code (right before
you open the ClientDataSet to get
the data):

Filter := ‘Length_In > 42’;
Filtered := True;

You can also combine these two
techniques: using a filter for a
rough filter and a narrow selection
inside the while not Eof loop to
pick only the records you really
want to display (also useful for
conditions that are hard to express
as filter expressions).

Multi-User Read-Only
There’s one important thing you
should have noticed from the
example in Listing 1 and that’s the
fact that I’m only using the
ClientDataSet to load data, search
it and present the selected
records. I do not make any modifi-
cations (insert, append or edit) to
the data, nor do I save the data
back to disk. Why would that be?

Well, the main reason is that
whilst a ClientDataSet can save
itself to an external file, it can only
save everything at once. All the
records can be written to an exter-
nal file with one SaveToFile, or
using the Filename property, as we
saw last time. This is no big deal for
a small ClientDataSet, but with
bigger ClientDataSets (say, a few
Mb in size), we find a slight perfor-
mance hit when loading the
ClientDataSet, but performance
falls especially when saving the
ClientDataSet to file or stream
again. And the worst thing is that
we could potentially overwrite
someone else’s changes, because
the ClientDataSet using SaveToFile
is saving itself on a table-level and
not on a record-level, compared to
using a normal dataset.

Even when using the Client-
DataSet inside an ISAPI DLL
(instead of a CGI executable), we’d
still need to perform a SaveToFile if
the content changes, potentially
overwriting changes that have

happened in another ISAPI thread
(unless you want to make the
ClientDataSet available in a single
thread only, but that would limit
the usability of your web server
application).

In short: using a ClientDataSet
component as a standalone
datasource (with LoadFromFile and
SaveToFile) is only a sensible solu-
tion if you want to present
read-only data, not when adding or
updating data.

Standalone GUI
When using a standalone Windows
GUI, we’re playing a different
ballgame, of course. This time,
there’s only one user, and rarely a
chance of overwriting a
ClientDataSet from another user
(unless you decide to share a
ClientDataSet .CDS or .XML file on
a network, but in that case the data
packets are actually moving from
one machine to another and a
MIDAS licence might be necessary,
which is what I’d like to avoid when
using standalone ClientDataSets
this way).

In short: when writing
standalone Windows GUI applica-
tions, there is little chance of run-
ning into the aforementioned
update problems with ClientData-
Sets using LoadFromFile and
SaveToFile. And you do have the
benefit of a zero-configuration
DBMS all in one MIDAS.DLL. When
I’m talking about a Windows GUI
application, I include ActiveForms
as well. And this opens up a whole
new way of deploying thin (only
the ActiveForm with MIDAS.DLL)
rich (all visual Delphi components)
internet clients that’s too good to
ignore.

Communicating XML
Apart from having a read-only web
server application or a fully
read-write Windows GUI applica-
tion, I now want to show you how

we can write a Delphi application
to produce XML compatible with
ClientDataSet (using the code
from last month) and use socket
components to send it over a wire
to another Delphi application that
can use this XML to feed the
ClientDataSet and show the data
inside a DBGrid. Think of this as
2-tier the ‘cheap’ way, but also as
2-tier the ‘professional’ way,
meaning that it’s the 2-tier way we
will have when Delphi Professional
for Linux ships, including a
ClientDataSet but without Connec-
tion components. The same will be
true for the upcoming Delphi 6
Professional: MIDAS without the
multi-tier communication connec-
tion components.

As an example, I now want to
write the skeleton of a 2-tier order-
ing system, where multiple client
applications (for example, used by
customers) are using regular
tables to produce XML data that
they send to a single server appli-
cation (for example, an ordering
database). Since the DataSetXML
code from last month can in fact
operate on any dataset component
(including a TClientDataSet), we
can in practice decide to turn
either the clients or the server or
even both into ClientDataSet appli-
cations. The only thing we need to
do by ourselves now is produce
the data in XML format and send it
over the wire using two socket
components.

XML Server
In order to send a certain string
(containing XML in our case) over
a socket connection, we must use
the TServerSocket and TClientS-
ockets of Delphi 5 Professional. We
start with the XML Server applica-
tion, the one that receives the
initial XML string. The Client appli-
cation has to send the XML string

while not Eof do begin
if FieldByName('Length_In').AsInteger > 42 then begin
writeln('<TR>');
for i:=0 to Pred(FieldCount) do
writeln('<TD VALIGN=TOP>',Fields[i].AsString,'</TD>');

writeln('</TR>')
end;
Next

end;

➤ Listing 2

22 The Delphi Magazine Issue 63

to the server using a specific port.
A port can be compared to a radio
frequency: only if the radio is set to
‘listen’ to a specific frequency, will
the radio play the music sent by a
specific radio station. With sock-
ets, we can determine the port
number ourselves. Well, almost,
that is, since port numbers smaller
than 1024 are reserved for internal
use and services such as FTP and
HTTP connections (just about
everything on the net boils down to
a socket connection in the end).

Start a new application with
Delphi 5 and drop a TServerSocket
component from the Internet tab
on the main form. Make sure to give
the Port property a unique value
for your own communication
purpose (something like 4242,
although that might not be unique
when I’m around). Once we set the
property Active to True, the server
will be available (when the applica-
tion runs) to receive client
connections.

XML Client
Start a new application for the XML
Client, but this time place a
TClientSocket component on the
main form. The Port number must
be the same as the one you used in
the TServerSocket component (oth-
erwise they won’t find each other),
so I’ve used 4242 again here. Apart
from the Port number, the client
must specify which server it wants
to connect to (and send its XML
data to). There are two properties
that we can use for this purpose,
namely Address and Host. The prop-
erty Address can only contain an IP
address (like 192.168.92.201 for my
laptop), while the Host property

can contain either an IP address or
a valid DNS name (like Voyager,
which is the IP-address for the
same laptop, as defined in the
HOSTS file on my NT machine).
Only when both the XML Server
and Client are running on the same
machine, it is possible to specify
LocalHost as Host. In our case, I’ve
specified the Address, since that
feels like the fastest (and most
maintenance needing) way to
specify which server machine to
connect to.

Once we set the Active property
of the ClientSocket to True, it will
directly try to find the ServerSocket
component on the target machine
(specified by the Address or Host
property) by sending a connection
string to the specified Port of that
IP address. It should be obvious,
I hope, that the server application
must be started before you try to
start the client application!

XML Connection
When the client application makes
a connection to the server, then
the OnClientConnection event is
fired (at the server side). This is
the moment where the server can
send an XML string with the table
definitions to the client. Listing 3
contains the server unit. Note that
I’m sharing the XMLString here,

because multiple clients may want
to connect to the server to obtain
the XML data. When the form is
activated, I load an external file
that holds the XML into the
XMLString using a fast BlockRead.

The content of XMLString could
be generated by the Table-2-XML
definition code we wrote last time
(and in fact the file table.xml con-
tains the Table-2-XML generated
XML data). As soon as the
XMLString is sent by the server and
received by the client, the OnRead
event of the ClientSocket on the
client side is called. In this event
handler, we can retrieve the
XMLString data sent by the server,
and use it to feed (initialise) our
local ClientDataSet, see Listing 4.

Note that we cannot be sure that
all data will be received in this
single event. Hence the code to
append all incoming data (from the
SocketServer) to a single Socket-
Text variable. As soon as the clos-
ing XML tag is received (in this
case the </DATAPACKET> tag, not the
</XML> tag), we know that the last
bit of data has been transferred,
and only then can we truly dump
the SocketText content to a file
(called client.xml) and load it
inside the ClientDataSet.

unit SUnit;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, ScktComp;

type
TForm1 = class(TForm)
ServerSocket1: TServerSocket;
procedure FormActivate(Sender: TObject);
procedure ServerSocket1ClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

private
XMLString: String;

end;
var
Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormActivate(Sender: TObject);
var
F: File;

begin
System.Assign(F,'table.xml');
Reset(F,1);
SetLength(XMLString,FileSize(F));
BlockRead(F,XMLString[1],FileSize(F));
System.Close(F)

end;
procedure TForm1.ServerSocket1ClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

begin
Caption := Caption + '!';
Socket.SendText(XMLString)

end;
end.

➤ Listing 3
procedure TForm2.ClientSocket1Read(Sender: TObject; Socket: TCustomWinSocket);
var
F: System.Text;

begin
Caption := Caption + '.';
SocketText := SocketText + Socket.ReceiveText;
if Pos('</DATAPACKET>',SocketText) > 0 then begin
System.Assign(F,'client.xml');
Rewrite(F);
writeln(F,SocketText);
System.Close(F);
Caption := Caption + '!';
SocketText := '';
ClientDataSet1.LoadFromFile('client.xml');

end
end;

➤ Listing 4

24 The Delphi Magazine Issue 63

You can now even decide to set
the FileName property of the local
ClientDataSet to client.xml, and
thus benefit from the briefcase
model. When the FileName prop-
erty has a value, the content of
ClientDataSetwill automatically be
saved to this particular file when
you close the application.

One result of sending the XML as
type XMLString over the socket
connection (using port 4242) is
that the client is truly a thin client.
We only need the ClientSocket
component, which receives the
XML data that is fed to the
ClientDataSet, and then of course a
DataSource connecting the
ClientDataSet to the DBNavigator
and DBGrid. Apart from that, we
only need the MIDAS.DLL on the
client side.

Note, by the way, that the client
application is totally unaware of
the data definition (tables, fields)
that it receives from the server. At
the server side, we could decide to
load and send the XML versions of
BIOLIFE or CUSTOMER or whatever
other database table we have con-
verted to XML, including an empty
definition only
XML file gen-
erated with
the final tool
from last time.
As long as we
send Client-
DataSet-com-
patible XML
over the
socket con-
nection, the

client will be able to display every-
thing correctly. Ideal for thin web
clients, if you ask me.

XML String
The Server code in Listing 3
currently loads an XML file
table.xml. This means that the
XMLString was loaded with the

unit XMLStr;
interface
uses
DB;

function DataSetXMLString(DataSet: TDataSet): String;
implementation
uses
SysUtils, TypInfo;

function DataSetXMLString(DataSet: TDataSet): String;
var
Str: String;
i: Integer;
function Print(Str: String): String;
{ Convert a fieldname to a printable name }
var
i: Integer;

begin
for i:=Length(Str) downto 1 do
if not (UpCase(Str[i]) in ['A'..'Z','1'..'9']) then
Str[i] := '_';

Result := Str
end {Print};
function EnCode(Str: String): String;
{ Convert memo contents to single line XML }
var
i: Integer;

begin
for i:=Length(Str) downto 1 do begin
if (Ord(Str[i]) in [1..31]) or
(Str[i] = '"') then begin
Insert('&#'+IntToStr(Ord(Str[i]))+';',Str,i+1);
Delete(Str,i,1)

end else if Str[i] = #0 then
Delete(Str,i,1)

end;
Result := Str

end {EnCode};
begin
ShortDateFormat := 'YYYYMMDD';
try
Str := '<?xml version="1.0" standalone="yes"?>';
Str := Str + '<DATAPACKET Version="2.0">';
with DataSet do begin
Str := Str + '<METADATA>';
Str := Str + '<FIELDS>';
if not Active then

{ get info without opening the database }
FieldDefs.Update;

for i:=0 to Pred(FieldDefs.Count) do begin
Str := Str + '<FIELD ';
if Print(FieldDefs[i].Name) <> FieldDefs[i].Name
then { fieldname }
Str := Str + 'fieldname="' +
FieldDefs[i].Name + '" ';

Str := Str + 'attrname="' +
Print(FieldDefs[i].Name) + '" fieldtype="';

case FieldDefs[i].DataType of

ftString,
ftFixedChar,
ftWideString: Str := Str + 'string';

ftBoolean: Str := Str + 'boolean';
ftSmallint: Str := Str + 'i2';
ftInteger: Str := Str + 'i4';
ftAutoInc: Str := Str + 'i4" readonly="true"
SUBTYPE="Autoinc';
ftWord, // why not i4 ??
ftFloat: Str := Str + 'r8';

ftCurrency: Str := Str + 'r8" SUBTYPE="Money';
ftBCD: Str := Str + 'fixed';
ftDate: Str := Str + 'date';
ftTime: Str := Str + 'time';

ftDateTime: Str := Str + 'datetime';
ftBytes: Str := Str + 'bin.hex';

ftVarBytes,
ftBlob: Str := Str + 'bin.hex" SUBTYPE="Binary';
ftMemo: Str := Str + 'bin.hex" SUBTYPE="Text';

ftGraphic,
ftTypedBinary: Str := Str + 'bin.hex"

SUBTYPE="Graphics';
ftFmtMemo: Str := Str + 'bin.hex"

SUBTYPE="Formatted';
ftParadoxOle,
ftDBaseOle: Str := Str + 'bin.hex" SUBTYPE="Ole'
end;
if FieldDefs[i].Required then
Str := Str + '"required="true';

if FieldDefs[i].Size > 0 then
Str := Str + '" WIDTH="' +
IntToStr(FieldDefs[i].Size);

Str := Str + '"/>'
end;
Str := Str + '</FIELDS>';
Str := Str + '</METADATA>';
if not Active then
Open;

Str := Str + '<ROWDATA>';
while not Eof do begin
Str := Str + '<ROW ';
for i:=0 to Pred(Fields.Count) do
if (Fields[i].AsString <> '') and
((Fields[i].DisplayText = Fields[i].AsString) or
(Fields[i].DisplayText = '(MEMO)')) then
Str := Str + Print(Fields[i].FieldName) + '="' +
EnCode(Fields[i].AsString) + '" ';

Str := Str + '/>';
Next

end;
Str := Str + '</ROWDATA>'

end;
Str := Str + '</DATAPACKET>'

finally
Result := Str

end
end;
end.

➤ Listing 5
➤ Figure 1

November 2000 The Delphi Magazine 25

contents of an external XML file
generated by the DataSetXML con-
version routine from last month.
To make things a little easier, I’ve
modified the DataSetXML function
into a DataSetXMLString function
for the occasion (see Listing 5 for
details), so it can return an instant
XML LongString with the entire
table. Quite handy, in fact, as it
saves us the trouble of using
external files to store and load the
XML from.

Given a DataSet on the server
side, the response to a client con-
nection can be modified using the
DataSetXMLString. And this dataset
on the server can be used to apply
the updates (if you decide to send
those from the client back to the
server again), but I’ll leave that as
an exercise for the reader.

What’s important is that this
technique will be very useful once
Delphi Professional for Linux ships
and as soon as this is available I
will follow up with an article that
shows how to connect a Delphi for
Windows and a Delphi for Linux
application to each other using

the Socket component and sending
XML as data back and forth. This
should be very interesting, to say
the least!

TableBob
Remember that last time I claimed
that the DataSetXML converter and
Table-2-XML definition utilities
were in need of a name? Well, last
week I remembered that I already
had a similar freeware tool, called
TableBob, which can convert
Tables and records to Object
Pascal source code (to recreate
the table) and HTML. So I’ve
decided to extend TableBob with
the abilities to produce XML com-
patible with ClientDataSet as well.
By the time you read this, the new
version of TableBob will be avail-
able on my website at www.
drbob42.com/tools (and rest
assured that a Linux edition will
ship shortly after Delphi for Linux
is available).

Next Time
We have seen that producing XML
is in fact quite similar to producing

HTML. And from there, it’s only a
small step to producing WML, the
Wireless Markup Language that
can be used in WAP (Wireless
Application Protocol) applica-
tions. The hype (and truth) about
WML and WAP, and techniques to
produce WAP WML applications
using Delphi 5, are the topics of
next month’s column, so stay
tuned...

Acknowledgements
I would like to thank my TAS-AT
DOC colleague Arnim Mulder for
his welcome assistance and
suggestions while working with
the socket server and client
components.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an @-
consultant for TAS Advanced
Technologies and co-founder of
the Delphi OplossingsCentrum (at
www.tas-at.com/doc), as well as a
freelance author and speaker.

	Last Time
	Simple CGI
	Multi-User Read-Only
	Standalone GUI
	Communicating XML
	XML Server
	XML Client
	XML Connection
	XML String
	TableBob
	Next Time
	Acknowledgements

